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Abstract

We present a deadlock-free path-based fault-tolerant multicast algorithm in 2-D meshes. The
fault model considered is the faulty block model with inter-block distance of at least three. The
path is Hamiltonian that does not need to be reconstructed when a faulty block is encountered.
Instead, the path is updated locally in the neighborhood of faulty blocks. Two virtual channels
are used to prevent the deadlock. The approach can be easily extended to 2-D meshes with
inter-block distance of at least two and to 3-D meshes. This is the first attempt to localize the
effect of a faulty block in a path-based fault-tolerant multicast algorithm.
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1 Introduction

The distributed memory multiprocessor paradigm provides a promising means of constructing s-
calable parallel computers. These systems comprise a collection of nodes, where each node consists
of a processor with its own local memory and a router which supports message communication
between nodes. The routers are connected by channels according to a particular interconnection
topology. Among the most common topologies for multicomputers are low-dimensional meshes.
These topologies are scalable and have a number of features that make them particularly amenable
to high-performance computing [8], [13]. For example, a two-dimensional mesh topology is used in
the Intel Touchstone DELTA [11] and the Symult 2010 [18] and a three-dimensional torus (mesh
with wraparound connections) is used in Cray T3D [7] and Cray T3E [17].

In order to minimize network latency, the current generation of multicomputers employ the
wormhole routing switching strategy [16]. Communication in the network can be either unicast or
multicast. In unicast communication a message is sent from a source processor to a single destination
processor, whereas in multicast communication a message is sent from a source processor to an
arbitrary set of destination processors. Multicast communication has applications in a number of
fundamental operations such as barrier synchronization [23], cache coherency in distributed share-

memory architectures [14], and clock synchronization [1], among others.

In a path-based multicast scheme, a source node prepares a message for delivery to a set of
destinations by first sorting the addresses of the destinations in the order in which they are to be
delivered, and then placing this sorted list in the header flits of the message. When the header
enters a router with address «a, the router checks to see if « is the next address in the header. If
s0, the address « is removed from the message header and the data flits are forwarded both to the
local processor at this node as well as to the next node on the path. Otherwise, the message is
forwarded only to the next node on the path. In this way, the message is eventually delivered to

every destination in the header.

In this paper we propose a deadlock-free path-based fault-tolerant multicast algorithm. First
of all, a Hamiltonian path is constructed that does not need to be reconstructed when a faulty
block is encountered. Instead, the path is updated in the neighborhood of faulty blocks. The
routing algorithm is made deadlock-free by using two virtual channels. The main advantage of this
approach is scalability, that is, the complexity of path reconfiguration does not increase rapidly

when the number of faulty blocks increases.

The rest of the paper is organized as follows: Section 2 reviews some related work. Section 3
gives the notation and preliminary, where a path-based multicast algorithm without faulty block is
proposed. Section 4 presents a path-based multicast algorithm of faulty blocks with an inter-block

distance of at least three. Section 5 presents two extensions: one extension to 3-D meshes and the
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Figure 1: The propagation of the faulty block information

other to the faulty block model with a distance of at least two. Section 6 is the conclusion.

2 Notation and Preliminaries

2.1 2-D meshes and block fault model

A k-ary n-dimensional (n-D) mesh with N=k" nodes has an interior node degree of 2n and the
network diameter is (k — 1)n. Each node has an address (a1, ag, ...,a,), where 0 < a; < k — 1.
Two nodes (a1, as,...,a,) and (by,be, ..., b,) are connected if their addresses differ in one and only
one element (dimension), say dimension 4; moreover, |a; — b;| = 1. Basically, nodes along each

dimension are connected as a linear array. Each node in a 2-D mesh is labeled as (z, y).
The fault model we use is block fault model which is defined as follows:

Definition 1: In a 2-D mesh, a healthy node is unsafe if there are two or more unsafe or faulty

neighbors. A faulty block contains all the connected unsafe and faulty nodes.

The block fault model has the following interesting property: In a 2-D mesh, each faulty block

is a rectangle and the distance between any two faulty blocks is at least three [21].

Definition 2: The left (right) edge of a faulty block is a one-unit away parallel line to the left
(right) side of the faulty block.

In Figure 1, the left solid line is the left edge of the faulty block and right solid line is the right
edge of the faulty block. The positions of left and right edges of a faulty block define its type which

determines the way path reconfiguration is done.
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Figure 2: Example of (a) an undirected Hamiltonian path and the corresponding (b) Py and (c) P,

directed networks of a mesh.
2.2 Path-based multicast algorithm in a fault-free 2-D mesh

First an undirected Hamiltonian path, which goes through each node exactly once, is constructed.
An example of an undirected Hamiltonian path, with node (0,0) as an end node, is given in
Figure 2 (a). The solid lines in the figure constitute the Hamiltonian path. From this two directed
Hamiltonian paths can be constructed: one starts from (0,0), the Py path (see the solid lines in
Figure 2 (b)), and another ends at (0,0), the P, path (see the solid lines in Figure 2 (c)). The
links that are not part of the Hamiltonian path may be used to reduce path length and these links
are called shortcut. Shortcuts are represented by dashed arrow lines in Figures 2 (b) and (c). For
example, a shortcut from (2,0) to (3,0) saves eight steps. All the nodes in the system can be
ordered based on the traversal order in the Py path. (z1,41) < (22, y2) means that the second node
is after the first one in the Py path starting from (0,0). The Py network includes the P; path and
all the relevant shortcuts (see Figure 2(b)). Similarly, the P, network includes the P, path and all

the relevant shortcuts (see Figure 2(c)).

2.3 Path-based fault-tolerant multicasting in 2-D meshes

The path-based multicast algorithm for a fault-free 2-D mesh can be extended to handle faulty
blocks. If there is no fault, use the column-path-based algorithm. If there are faulty blocks in
the system, construct detour paths around faulty blocks according to four cases in the Py and P,
networks, respectively. We first look at a single faulty block. Based on the path directions of the
left and right edges, there are four cases in constructing a detour path around a faulty block for the
Py network. That is, (down, up), (down,down), (up,down), or (up,up). The corresponding detour

paths are shown in Figures 3 (a), (b), (¢), and (d), respectively. Similarly, there are also four cases
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Figure 3: The four cases of routing around a faulty block in the Py network.

in constructing a detour path in the P, network when a message meets a faulty block (See Figure
3 (e), (f), (g), and (h), respectively). In our algorithm, we do not consider dynamic faults, i.e., it

is assumed that a new faulty block comes during idle time.

If the network involves more than one faulty block, because the distance between two faulty
blocks is at least three, reconfiguration can be done independently around each faulty block. We
can still use the proposed method to establish the detour path around each individual faulty block.

Figure 4 (a) shows an example of detour path involving three faulty blocks.

To facilitate the discussion on deadlock-free routing, we number the physical channels around
the faulty block as shown in Figures 5(e) and (f), the clockwise physical channels are numbered
from 1 to 4 and the counter-clockwise physical channels are numbered from 5 to 8. Figures
5(a),(b),(c),(d) are the representations of the four cases of detour path in the P; network shown
in Figures 3(a),(b),(c),(d), respectively. Channel 2a represents the left section of physical channel
2 and 2b represents the right section of physical channel 2. Channels 4a and 4b are defined in the
same way. Figures 5(a)’,(b)’,(c)’,(d)’ are the representations of the four cases of detour path in

the P, network shown in Figures 3(e)(f)(g)(h). In all the eight cases in Figure 5, we simplify the
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Figure 4: (a) Detour paths around multiple fault blocks (b) The dependency graph of physical
channels in the (down, up)-type of the faulty block

presentation of all the sections of the detour path at each side of the faulty block that follow a

particular direction and make them straight lines.

If we just use these physical channels for all the eight cases, deadlock may occur during the
routing process; that is, there can be a cycle in the corresponding channel dependency graph [9]. For
example, the channel dependency graph of cases Figures 5(a) and (a)’ is shown in Figure 4(b) and we
can see there are three cycles in the dependency graph. Bold lines represent channel dependencies
in the P network and thin lines represent channel dependencies in the Py network. Virtual channels
can be used to avoid deadlock. Virtual channels are derived from a physical channel by multiplexing
the physical channel into many logical (virtual) channels. We use two virtual channels for each
physical channel. Thus the whole physical network can be divided into two virtual channel networks
0 and 1. That is, virtual channel network 0(1) consists of virtual channels 0(1) only. In Figure 5,
the physical channels around the faulty block are assigned with either virtual channels in virtual
channel network 0 or virtual channel network 1. Solid lines represent virtual channels in virtual
channel network 0 while dashed lines represent virtual channels in virtual channel network 1. For
example, physical channel 5 has two virtual channels: 5 in virtual channel network 0 and 5 in
virtual channel network 1. Note that channels in Figure 5 include ones that are adjacent to faulty
blocks and ones that are not adjacent to faulty blocks. Only the ones that are adjacent to faulty
blocks are potentially used more than once in detour paths in the P; and P, networks. Therefore,

virtual channels are used only for the channels that are adjacent to faulty blocks.



By assigning the virtual channels in this way, we proved the following theorem:
Theorem 1: The fault-tolerant multicast algorithm is deadlock-free.

Note that deadlock might still occur when there are dynamic faults, i.e., fault occur during a
routing process. The handling of dynamic faults is much more complex and it will be considered

in our future work.

The approach used in 2-D meshes with inter-block distance of at least three can be easily

extended to 2-D meshes with inter-block distance of two and to 3-D meshes.

3 Conclusion

In this paper, we have presented a path-based fault-tolerant multicast algorithm in 2-D meshes
with inter-block distance of at least three. The path we used is a Hamiltonian path that does not
need to be reconstructed when a fault occurs. Instead, only the section around the faulty block is
reconstructed and leave the rest of the path unchanged. We use two virtual channels to solve the
deadlock problem. This is the first attempt to localize the affect of a faulty block to its neighboring
nodes. In our future work, we plan to extend the design of path-based fault-tolerant multicast
algorithm to cover dynamic faults, i.e., faults occur during a multicast process, and to consider

multiple multicast [12].
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